Matryoshka Diffusion Models: 高效训练高质量文本到图像模型的新方法

RayRay
Matryoshka Diffusion Models文本到图像生成高分辨率图像合成神经网络模型深度学习Github开源项目

Matryoshka Diffusion Models:高效训练高质量文本到图像模型的新方法

近年来,扩散模型(Diffusion Models)已经成为生成高质量图像和视频的主流方法。然而,训练高维度的扩散模型仍然面临着巨大的计算和优化挑战。为了解决这一问题,Apple 研究团队提出了一种名为 Matryoshka Diffusion Models (MDM) 的新方法,可以在有限的计算资源和数据集下,高效训练出高质量的大尺寸图像生成模型。

MDM 的核心思想

MDM 的核心思想是利用嵌套结构(Matryoshka结构)来组织模型,使得单个像素空间模型就可以生成多种分辨率的图像。具体来说,MDM 采用了以下关键技术:

  1. 嵌套 U-Net 架构:使用嵌套的 U-Net 网络,可以在单个模型中同时处理多种分辨率的图像特征。

  2. 多尺度训练:在训练过程中,同时优化多个分辨率的生成任务,提高模型的泛化能力。

  3. 自适应采样:根据输入提示和目标分辨率,自适应地选择合适的采样策略。

通过这种设计,MDM 可以用单个模型实现从64x64到1024x1024等多种分辨率图像的生成,大大提高了模型的效率和灵活性。

MDM multi scale pipeline

MDM 的主要优势

与传统的扩散模型相比,MDM 具有以下显著优势:

  1. 高效训练:只需训练一个模型就可以生成多种分辨率的图像,大大降低了计算资源需求。

  2. 强大的零样本泛化能力:在仅使用1200万张图像的CC12M数据集上训练,MDM就展现出了出色的大尺寸图像生成能力。

  3. 灵活的推理:可以根据需求生成不同分辨率的图像,满足各种应用场景。

  4. 高质量输出:生成的图像质量与专门针对单一分辨率训练的模型相当。

使用 MDM 生成图像

Apple 研究团队已经开源了 MDM 的实现代码和预训练模型。用户可以通过以下步骤快速上手使用 MDM 生成图像:

  1. 安装 ml_mdm 库:
pip install ml_mdm
  1. 下载预训练模型:
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr64/vis_model.pth --output vis_model_64x64.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr256/vis_model.pth --output vis_model_256x256.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr1024/vis_model.pth --output vis_model_1024x1024.pth
  1. 运行Web演示:
torchrun --standalone --nproc_per_node=1 ml_mdm/clis/generate_sample.py --port YOUR_PORT

通过Web界面,用户可以输入文本描述,选择目标分辨率,然后生成相应的图像。

Web demo screenshot

训练自己的 MDM 模型

除了使用预训练模型,研究人员还可以使用开源代码训练自己的 MDM 模型。主要步骤如下:

  1. 准备数据集:可以使用CC12M等公开数据集,或者自己收集的图文对数据。

  2. 配置训练参数:在 configs 目录下修改相应的配置文件。

  3. 启动训练:

torchrun --standalone --nproc_per_node=8 ml_mdm/clis/train_parallel.py \
  --file-list=training_0.tsv \
  --multinode=0 --output-dir=/mnt/data/outputs \
  --config_path configs/models/cc12m_64x64.yaml \
  --num-training-steps=100000 --warmup-steps 10000
  1. 采样生成图像:
torchrun --standalone --nproc_per_node=1 ml_mdm/clis/generate_batch.py \
  --config_path configs/models/cc12m_64x64.yaml \
  --min-examples 3 --test-file-list validation.tsv \
  --sample-image-size 64 --model-file /mnt/data/outputs/vis_model_000100.pth

总结

Matryoshka Diffusion Models 为高质量文本到图像生成模型的高效训练提供了一种新的解决方案。它不仅可以在有限的计算资源和数据集下实现大尺寸图像的生成,还具有灵活的多分辨率输出能力。随着 MDM 相关代码和模型的开源,我们期待看到更多基于此技术的创新应用出现。

无论是图像生成、内容创作,还是计算机视觉研究,MDM 都为这些领域带来了新的可能性。研究人员和开发者可以基于开源代码进行进一步的探索和改进,推动文本到图像生成技术的不断发展。

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
下拉加载更多