近年来,扩散模型(Diffusion Models)已经成为生成高质量图像和视频的主流方法。然而,训练高维度的扩散模型仍然面临着巨大的计算和优化挑战。为了解决这一问题,Apple 研究团队提出了一种名为 Matryoshka Diffusion Models (MDM) 的新方法,可以在有限的计算资源和数据集下,高效训练出高质量的大尺寸图像生成模型。
MDM 的核心思想是利用嵌套结构(Matryoshka结构)来组织模型,使得单个像素空间模型就可以生成多种分辨率的图像。具体来说,MDM 采用了以下关键技术:
嵌套 U-Net 架构:使用嵌套的 U-Net 网络,可以在单个模型中同时处理多种分辨率的图像特征。
多尺度训练:在训练过程中,同时优化多个分辨率的生成任务,提高模型的泛化能力。
自适应采样:根据输入提示和目标分辨率,自适应地选择合适的采样策略。
通过这种设计,MDM 可以用单个模型实现从64x64到1024x1024等多种分辨率图像的生成,大大提高了模型的效率和灵活性。
与传统的扩散模型相比,MDM 具有以下显著优势:
高效训练:只需训练一个模型就可以生成多种分辨率的图像,大大降低了计算资源需求。
强大的零样本泛化能力:在仅使用1200万张图像的CC12M数据集上训练,MDM就展现出了出色的大尺寸图像生成能力。
灵活的推理:可以根据需求生成不同分辨率的图像,满足各种应用场景 。
高质量输出:生成的图像质量与专门针对单一分辨率训练的模型相当。
Apple 研究团队已经开源了 MDM 的实现代码和预训练模型。用户可以通过以下步骤快速上手使用 MDM 生成图像:
pip install ml_mdm
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr64/vis_model.pth --output vis_model_64x64.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr256/vis_model.pth --output vis_model_256x256.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr1024/vis_model.pth --output vis_model_1024x1024.pth
torchrun --standalone --nproc_per_node=1 ml_mdm/clis/generate_sample.py --port YOUR_PORT
通过Web界面,用户可以输入文本描述,选择目标分辨率,然后生成相应的图像。
除了使用预训练模型,研究人员还可以使用开源代码训练自己的 MDM 模型。主要步骤如下:
准备数据集:可以使用CC12M等公开数据集,或者自己收集的图文对数据。
配置训练参数:在 configs 目录下修改相应的配置文件。
启动训练:
torchrun --standalone --nproc_per_node=8 ml_mdm/clis/train_parallel.py \
--file-list=training_0.tsv \
--multinode=0 --output-dir=/mnt/data/outputs \
--config_path configs/models/cc12m_64x64.yaml \
--num-training-steps=100000 --warmup-steps 10000
torchrun --standalone --nproc_per_node=1 ml_mdm/clis/generate_batch.py \
--config_path configs/models/cc12m_64x64.yaml \
--min-examples 3 --test-file-list validation.tsv \
--sample-image-size 64 --model-file /mnt/data/outputs/vis_model_000100.pth
Matryoshka Diffusion Models 为高质量文本到图像生成模型的高效训练提供了一种新的解决方案。它不仅可以在有限的计算资源和数据集下实现大尺寸图像的生成,还具有灵活的多分辨率输出能力。随着 MDM 相关代码和模型的开源,我们期待看到更多基于此技术的创新应用出现。
无论是图像生成、内容创作,还是计算机视觉研究,MDM 都为这些领域带来了新的可能性。研究人员和开发者可以基于开源代码进行进一步的探索和改进,推动文本到图像生成技术的不断发展。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成 文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪 等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号