机器学习数学基础:从入门到精通的学习资源指南

RayRay
Mathematics for Machine Learning深度学习概率论线性代数信息论Github开源项目

引言

机器学习作为人工智能的核心分支,正在各个领域发挥着越来越重要的作用。然而,要真正掌握机器学习技术,扎实的数学基础是不可或缺的。本文将为读者梳理机器学习所需的数学知识体系,并推荐一系列优质学习资源,帮助读者从入门到精通,逐步构建起机器学习的数学基础。

机器学习中的核心数学领域

线性代数

线性代数是机器学习的基石之一。在机器学习中,我们经常需要处理向量、矩阵等数据结构,进行矩阵运算、特征值分解等操作。掌握线性代数,能帮助我们更好地理解许多机器学习算法的原理。

推荐资源:

  • 《Linear Algebra Done Right》by Sheldon Axler
  • Khan Academy的线性代数课程

微积分

微积分在机器学习中的应用非常广泛,特别是在优化算法中。梯度下降、反向传播等核心技术都依赖于微积分知识。多元微积分对于理解深度学习中的反向传播算法尤为重要。

推荐资源:

  • 《Calculus》by James Stewart
  • Khan Academy的微积分课程

概率论与统计

机器学习本质上是在处理不确定性,因此概率论和统计学知识必不可少。它们能帮助我们理解数据分布、进行参数估计、评估模型性能等。

推荐资源:

  • 《Probability Theory: The Logic of Science》by E. T. Jaynes
  • 《The Elements of Statistical Learning》by Trevor Hastie等

信息论

信息论为我们提供了度量信息的方法,在机器学习中有着广泛应用。交叉熵、KL散度等概念都源于信息论,对于理解许多机器学习算法至关重要。

推荐资源:

  • 《Information Theory, Inference and Learning Algorithms》by David J. C. MacKay

综合性学习资源

除了针对特定数学领域的资源,还有一些优秀的综合性教材,能帮助读者系统地学习机器学习所需的数学知识。

《Mathematics for Machine Learning》

MML Book Cover

这本由Marc Peter Deisenroth等人编写的教材是学习机器学习数学基础的绝佳选择。它涵盖了线性代数、解析几何、矩阵分解、向量微积分、概率与分布、连续优化等主题,并将这些数学知识与机器学习算法相结合,帮助读者建立起数学与机器学习之间的联系。

该书分为两部分:

  1. 数学基础
  2. 核心机器学习问题

这种结构设计使得读者可以先掌握必要的数学工具,然后学习如何将这些工具应用到实际的机器学习问题中。

《Deep Learning》中的数学基础章节

由Ian Goodfellow、Yoshua Bengio和Aaron Courville合著的《Deep Learning》一书,其中的"Applied Math and Machine Learning Basics"章节提供了深度学习所需的数学基础知识概览。这部分内容简明扼要,适合快速回顾或入门。

《The Mathematical Engineering of Deep Learning》

这本由Benoit Liquet等人编写的新书提供了深度学习的数学工程视角。它不仅涵盖了深度学习的基础知识,还包括了卷积神经网络、循环神经网络、Transformer、生成对抗网络等高级主题的数学原理。对于想要深入理解深度学习数学原理的读者来说,这是一本不可多得的好书。

视频课程资源

除了书籍资源,还有一些优质的视频课程可以帮助读者更直观地学习机器学习数学基础。

帝国理工学院的多元微积分课程

由Sam Cooper和David Dye博士主讲的这门课程重点讲解了反向传播算法所依赖的多元微积分知识。课程涵盖了链式法则、雅可比矩阵、梯度下降等重要概念,对于理解深度学习的数学原理非常有帮助。

斯坦福大学CS229:机器学习

这门由Anand Avati讲授的经典课程包含了大量机器学习概念的数学解释。它不仅涵盖了机器学习算法,还深入探讨了这些算法背后的数学原理,是学习机器学习数学基础的绝佳资源。

论文资源

对于想要更深入了解机器学习数学原理的读者,以下两篇论文值得一读:

  1. 《The Matrix Calculus You Need For Deep Learning》by Terence Parr & Jeremy Howard
    这篇论文详细讲解了深度学习中需要用到的矩阵微积分知识,对于理解神经网络的数学原理非常有帮助。

  2. 《The Mathematics of AI》by Gitta Kutyniok
    这篇文章总结了数学在深度学习研究中的重要性,以及它如何推动人工智能领域的发展。

实践与应用

学习数学知识的最终目的是为了应用。以下资源可以帮助读者将所学的数学知识应用到实际的机器学习问题中:

  1. 线性回归Jupyter notebook教程
  2. PCA(主成分分析)Jupyter notebook教程
  3. 高斯混合模型Jupyter notebook教程

这些教程将理论知识与实际编程相结合,帮助读者更好地理解数学知识在机器学习中的应用。

结语

掌握机器学习的数学基础是一个循序渐进的过程。本文推荐的资源涵盖了从入门到高级的各个层次,读者可以根据自己的基础和需求选择合适的学习材料。记住,数学是理解和创新机器学习算法的关键工具,投入时间学习数学将会在未来的机器学习之路上获得丰厚的回报。

最后,学习是一个持续的过程。随着机器学习领域的不断发展,新的数学工具和概念也在不断涌现。保持学习的热情,跟踪领域的最新进展,将使你在机器学习的道路上走得更远。

如果在学习过程中遇到任何问题或需要进一步的指导,欢迎在Twitter上与专家交流。让我们共同努力,在机器学习的数学世界中探索更多的奥秘!

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔��片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多