LLM-Pruner:大型语言模型的结构化剪枝技术

RayRay
LLM-Pruner压缩结构剪枝多任务解决自动剪枝Github开源项目

LLM-Pruner:大型语言模型的结构化剪枝技术

大型语言模型(LLM)在自然语言处理领域展现出了惊人的能力,但其庞大的模型规模也给部署和应用带来了巨大挑战。为了解决这一问题,新加坡国立大学的研究人员提出了一种名为LLM-Pruner的创新方法,旨在通过结构化剪枝来压缩大型语言模型,同时保持其作为多任务求解器的原始能力。

LLM-Pruner的核心思想

LLM-Pruner的核心思想是采用结构化剪枝,选择性地移除模型中非关键的耦合结构。这种方法不同于传统的参数级剪枝,它能够在保持模型整体结构的同时,大幅减少参数数量和计算复杂度。LLM-Pruner的主要特点包括:

  1. 任务无关压缩:压缩后的LLM能够保持其作为多任务求解器的原始能力。

  2. 少量训练数据:仅使用5万个公开可用的样本(Alpaca数据集)进行模型微调。

  3. 高效压缩:剪枝过程仅需3分钟,微调过程仅需3小时。

  4. 自动结构化剪枝:能够以最小的人工干预对新的LLM进行剪枝。

LLM-Pruner的工作流程

LLM-Pruner的工作流程分为三个主要阶段:

  1. 发现阶段:探索LLM中复杂的相互依赖关系,找到最小可移除单元"组"。

  2. 估计阶段:评估每个"组"对模型整体性能的贡献,决定要剪枝的"组"。

  3. 恢复阶段:通过快速微调恢复模型性能。

LLM-Pruner工作流程

支持的模型

LLM-Pruner目前支持多种主流的大型语言模型,包括:

  • Llama-3.1
  • Llama-3
  • Llama-2
  • LLaMA
  • BLOOM
  • Vicuna
  • Baichuan
  • TinyLlama

这种广泛的兼容性使得LLM-Pruner能够应用于各种不同的场景和需求。

实验结果

研究人员对LLaMA-7B模型进行了详细的实验。结果显示,LLM-Pruner能够在保持模型性能的同时,显著减少参数数量和计算资源需求:

LLaMA-7B剪枝结果

从上图可以看出,LLM-Pruner在各项评估指标上都取得了不错的效果。特别是在使用2.59M样本进行微调后,压缩后的LLaMA-5.4B模型在多项任务上的表现甚至接近甚至超过了原始的LLaMA-7B模型。

实际应用

LLM-Pruner不仅在理论上表现出色,在实际应用中也展现了良好的效果。研究人员提供了一些压缩前后模型输出的对比示例:

原始模型输出压缩模型输出
LLaMa-7B宇宙是存在的所有空间、时间、物质和能量的总和。它包括所有可见和不可见的物质和能量,事实上整个宇宙是不可见的。关于其起源和最终命运有许多理论...LLaMa-5.4B宇宙是存在的所有空间、时间、物质和能量的总和。构成物理学的定律 — 电子围绕原子运动、磁铁吸引其他物体、行星围绕太阳运转 — 一直保持一致...
Vicuna-7B构建iOS应用的10个步骤:1.研究和开发想法。2.决定你想使用的平台(iOS、Android或两者)。3.制定计划和预算。4.雇佣一个开发团队。5.设计用户界面(UI)。6.开发用户界面(UI)。7.测试和迭代应用程序。8.将应用程序提交到应用商店。9.优化应用程序的性能和用户体验(UX)。10.营销和推广应用程序。Vicuna-5.4B构建iOS应用的10个步骤:1.规划你的应用:决定它应该做什么,它会是什么样子,以及构建它需要多少成本。2.雇佣一个开发者:一个优秀的iOS开发者将帮助你设计用户界面,创建应用程序,并确保它没有错误。3.创建用户界面:这是魔法发生的地方。你的应用程序的用户界面将在这一点上被设计和模拟...

从这些例子中可以看出,虽然压缩后的模型参数量减少了,但仍能生成连贯、有意义的文本,保持了原始模型的核心能力。

局限性与未来展望

尽管LLM-Pruner取得了显著的成果,研究人员也坦承该方法仍存在一些局限性:

  1. 虽然目前只使用了5万个数据样本和3小时的训练时间,但更多的数据和更长的训练时间可能会带来更好的效果。

  2. 当前压缩后的模型仍存在一些问题,如生成重复的标记或产生无意义的句子。压缩模型的质量还有很大的提升空间。

  3. 对于某些模型,仍无法自动识别连接和视图操作后的索引映射,需要额外的手动操作。

研究团队正在积极解决这些问题,并计划在未来的工作中进一步改进LLM-Pruner的性能和适用性。

结论

LLM-Pruner为大型语言模型的压缩提供了一种新的、高效的方法。通过结构化剪枝和少量数据微调,它能够显著减少模型规模,同时保持模型的多任务处理能力。这项技术有望推动大型语言模型在资源受限的环境中的应用,为自然语言处理领域带来新的可能性。

随着研究的深入和技术的不断改进,我们可以期待看到更多基于LLM-Pruner的创新应用,以及更加轻量、高效的大型语言模型在各个领域发挥作用。

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多