LLM-Pruner:大型语言模型的结构化剪枝技术

RayRay
LLM-Pruner压缩结构剪枝多任务解决自动剪枝Github开源项目

LLM-Pruner:大型语言模型的结构化剪枝技术

大型语言模型(LLM)在自然语言处理领域展现出了惊人的能力,但其庞大的模型规模也给部署和应用带来了巨大挑战。为了解决这一问题,新加坡国立大学的研究人员提出了一种名为LLM-Pruner的创新方法,旨在通过结构化剪枝来压缩大型语言模型,同时保持其作为多任务求解器的原始能力。

LLM-Pruner的核心思想

LLM-Pruner的核心思想是采用结构化剪枝,选择性地移除模型中非关键的耦合结构。这种方法不同于传统的参数级剪枝,它能够在保持模型整体结构的同时,大幅减少参数数量和计算复杂度。LLM-Pruner的主要特点包括:

  1. 任务无关压缩:压缩后的LLM能够保持其作为多任务求解器的原始能力。

  2. 少量训练数据:仅使用5万个公开可用的样本(Alpaca数据集)进行模型微调。

  3. 高效压缩:剪枝过程仅需3分钟,微调过程仅需3小时。

  4. 自动结构化剪枝:能够以最小的人工干预对新的LLM进行剪枝。

LLM-Pruner的工作流程

LLM-Pruner的工作流程分为三个主要阶段:

  1. 发现阶段:探索LLM中复杂的相互依赖关系,找到最小可移除单元"组"。

  2. 估计阶段:评估每个"组"对模型整体性能的贡献,决定要剪枝的"组"。

  3. 恢复阶段:通过快速微调恢复模型性能。

LLM-Pruner工作流程

支持的模型

LLM-Pruner目前支持多种主流的大型语言模型,包括:

  • Llama-3.1
  • Llama-3
  • Llama-2
  • LLaMA
  • BLOOM
  • Vicuna
  • Baichuan
  • TinyLlama

这种广泛的兼容性使得LLM-Pruner能够应用于各种不同的场景和需求。

实验结果

研究人员对LLaMA-7B模型进行了详细的实验。结果显示,LLM-Pruner能够在保持模型性能的同时,显著减少参数数量和计算资源需求:

LLaMA-7B剪枝结果

从上图可以看出,LLM-Pruner在各项评估指标上都取得了不错的效果。特别是在使用2.59M样本进行微调后,压缩后的LLaMA-5.4B模型在多项任务上的表现甚至接近甚至超过了原始的LLaMA-7B模型。

实际应用

LLM-Pruner不仅在理论上表现出色,在实际应用中也展现了良好的效果。研究人员提供了一些压缩前后模型输出的对比示例:

原始模型输出压缩模型输出
LLaMa-7B宇宙是存在的所有空间、时间、物质和能量的总和。它包括所有可见和不可见的物质和能量,事实上整个宇宙是不可见的。关于其起源和最终命运有许多理论...LLaMa-5.4B宇宙是存在的所有空间、时间、物质和能量的总和。构成物理学的定律 — 电子围绕原子运动、磁铁吸引其他物体、行星围绕太阳运转 — 一直保持一致...
Vicuna-7B构建iOS应用的10个步骤:1.研究和开发想法。2.决定你想使用的平台(iOS、Android或两者)。3.制定计划和预算。4.雇佣一个开发团队。5.设计用户界面(UI)。6.开发用户界面(UI)。7.测试和迭代应用程序。8.将应用程序提交到应用商店。9.优化应用程序的性能和用户体验(UX)。10.营销和推广应用程序。Vicuna-5.4B构建iOS应用的10个步骤:1.规划你的应用:决定它应该做什么,它会是什么样子,以及构建它需要多少成本。2.雇佣一个开发者:一个优秀的iOS开发者将帮助你设计用户界面,创建应用程序,并确保它没有错误。3.创建用户界面:这是魔法发生的地方。你的应用程序的用户界面将在这一点上被设计和模拟...

从这些例子中可以看出,虽然压缩后的模型参数量减少了,但仍能生成连贯、有意义的文本,保持了原始模型的核心能力。

局限性与未来展望

尽管LLM-Pruner取得了显著的成果,研究人员也坦承该方法仍存在一些局限性:

  1. 虽然目前只使用了5万个数据样本和3小时的训练时间,但更多的数据和更长的训练时间可能会带来更好的效果。

  2. 当前压缩后的模型仍存在一些问题,如生成重复的标记或产生无意义的句子。压缩模型的质量还有很大的提升空间。

  3. 对于某些模型,仍无法自动识别连接和视图操作后的索引映射,需要额外的手动操作。

研究团队正在积极解决这些问题,并计划在未来的工作中进一步改进LLM-Pruner的性能和适用性。

结论

LLM-Pruner为大型语言模型的压缩提供了一种新的、高效的方法。通过结构化剪枝和少量数据微调,它能够显著减少模型规模,同时保持模型的多任务处理能力。这项技术有望推动大型语言模型在资源受限的环境中的应用,为自然语言处理领域带来新的可能性。

随着研究的深入和技术的不断改进,我们可以期待看到更多基于LLM-Pruner的创新应用,以及更加轻量、高效的大型语言模型在各个领域发挥作用。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多