在人工智能和自然语言处理技术日新月异的今天,为网站添加智能交互功能已经成为提升用户体验的重要手段。本文将为您详细介绍如何利用LangChain和Supabase这两个强大的工具,构建一个功能丰富、反应迅速的网站聊天机器人。
LangChain是一个用于构建基于大型语言模型(LLM)应用的框架,它提供了一系列工具和接口,使开发者能够更容易地创建复杂的AI应用。而Supabase则是一个开源的Firebase替代品,提供了强大的数据库和后端服务。
这两个工具的结合为我们提供了一个理想的解决方案:LangChain负责处理自然语言交互和AI逻辑,而Supabase则为我们提供了可靠的数据存储和检索能力。
本项目旨在创建一个能够回答网站相关问题的聊天机器人。它将使用LangChain来处理用户输入,利用OpenAI的语言模型生成回答,并使用Supabase存储和检索相关的网页内容。
项目的主要特点包括:
首先,我们需要克隆项目仓库并安装必要的依赖:
git clone https://github.com/mayooear/langchain-supabase-website-chatbot.git cd langchain-supabase-website-chatbot pnpm install
接下来,我们需要设置环境变量。复制.env.local.example
文件并重命名为.env
,然后填入必要的API密钥:
OPENAI_API_KEY=your_openai_api_key
NEXT_PUBLIC_SUPABASE_URL=your_supabase_project_url
NEXT_PUBLIC_SUPABASE_ANON_KEY=your_supabase_anon_key
SUPABASE_SERVICE_ROLE_KEY=your_supabase_service_role_key
本项目使用自定义的网页加载器来抓取指定网页的内容。在utils/custom_web_loader.ts
文件中,您可以根据需要修改抓取逻辑:
async load(): Promise<Document[]>{ const $ = await this.scrape(); const text = $("body").text(); const metadata = { source: this.webPath }; return [new Document({ pageContent: text, metadata })]; }
抓取完成后,我们使用OpenAI的文本嵌入模型将文本转换为向量。这些向量随后被存储在Supabase数据库中,以便进行快速的相似性搜索。
在Supabase中,我们需要创建一个用于存储文档向量的表。运行schema.sql
文件中的SQL命令来设置必要的表结构和函数:
create table documents ( id bigserial primary key, content text, metadata jsonb, embedding vector(1536) ); create function match_documents ( query_embedding vector(1536), match_count int ) returns table ( id bigint, content text, metadata jsonb, similarity float ) language plpgsql as $$ begin return query select id, content, metadata, 1 - (documents.embedding <=> query_embedding) as similarity from documents order by documents.embedding <=> query_embedding limit match_count; end; $$;
这个设置允许我们存储文档内容、元数据和嵌入向量,并提供了一个用于相似性搜索的函数。
聊天机器人的核心逻辑在pages/api/chat.ts
文件中实现。这里我们使用LangChain的各种组件来处理用户输入,搜索相关内容,并生成回答:
const chain = ChatVectorDBQAChain.fromLLM(model, vectorstore); const response = await chain.call({ question: sanitizedQuestion, chat_history: formattedPreviousMessages, });
这个链式结构允许我们将用户的问 题与之前的对话历史结合起来,在向量数据库中搜索相关信息,然后使用语言模型生成最终的回答。
项目的前端使用Next.js和Tailwind CSS构建,提供了一个简洁直观的聊天界面。用户可以在这里输入问题,并实时看到机器人的回答。
完成开发后,您可以将项目部署到Vercel等平台上。对于大规模应用,您可能需要考虑以下优化:
通过结合LangChain和Supabase,我们创建了一个强大而灵活的网站聊天机器人系统。这个项目不仅展示了如何利用最新的AI技术增强网站功能,也为开发者提供了一个可扩展的框架,用于构建更复杂的AI驱动的应用。
随着自然语言处理技术的不断进步,我们可以期待看到更多创新的应用场景。无论是客户服务、内容推荐,还是个性化学习辅助,智能聊天机器人都将在其中扮演越来越重要的角色。
希望本文能为您的AI开发之旅提供有价值的参考和启发。如果您对这个项目感兴趣,欢迎访问GitHub仓库进行深入研究和贡献。让我们共同探索AI应用的无限可能!
🔗 相关资源:
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号