Lance: 为机器学习优化的现代列式数据格式

RayRay
LanceParquet机器学习矢量搜索数据格式Github开源项目

Lance:为机器学习而生的现代数据格式

在当今数据驱动的人工智能时代,高效的数据存储和处理格式对于机器学习的成功至关重要。Lance作为一种新兴的列式数据格式,正是为了解决机器学习工作流程中的数据挑战而诞生的。本文将深入探讨Lance的特性、优势以及它如何改变机器学习的数据管理方式。

Lance的诞生背景

随着机器学习和深度学习技术的快速发展,传统的数据格式如Parquet、JSON等在处理大规模机器学习数据集时显露出了一些局限性。Lance的创始团队意识到,机器学习开发周期的各个阶段(包括数据收集、探索、分析、特征工程、训练、评估和部署)都需要一种统一的、高性能的数据格式。

Lance的设计目标是成为一种多功能的数据格式,能够在机器学习开发的全生命周期中发挥作用,减少数据转换和迁移的需求,提高整体工作效率。

Lance的核心特性

  1. 高性能随机访问

Lance采用了创新的编码和布局方式,使得随机访问性能比Parquet等传统格式提高了100倍,同时保持了出色的扫描性能。这一特性对于需要频繁随机访问数据的机器学习任务(如模型训练中的数据批处理)尤其重要。

Lance vs Parquet Performance

  1. 内置向量搜索

Lance原生支持向量索引,可以在毫秒级别内完成最近邻搜索。这一功能使Lance成为构建搜索引擎和特征存储的理想选择。向量搜索还可以与OLAP查询结合,实现复杂的分析任务。

  1. 零拷贝自动版本控制

Lance支持数据版本控制,可以自动记录数据的变更历史。这一功能对于机器学习实验的可重复性和模型的可解释性至关重要。

  1. 生态系统集成

Lance与主流的数据科学工具和库兼容,包括Apache Arrow、Pandas、Polars和DuckDB等。这种广泛的兼容性使得Lance可以无缝融入现有的数据处理流程。

Lance的技术实现

Lance的核心是用Rust语言实现的,这保证了其高性能和内存安全性。同时,Lance提供了Python绑定,使得Python用户可以方便地使用Lance的功能。

Lance的文件结构设计考虑了机器学习数据的特点:

  • 嵌套字段: Lance将每个子字段存储为单独的列,支持高效的过滤操作。
  • 自定义编码: 为了同时实现快速列扫描和亚线性点查询,Lance使用了定制的编码和布局方案。
  • Manifest文件: 用于记录数据快照,支持版本控制功能。

Lance在实际应用中的表现

  1. 向量搜索性能

在SIFT数据集(包含100万个128维向量)的基准测试中,Lance展现出了卓越的性能:

  • 对于100个随机采样的查询向量,平均响应时间不到1毫秒(在2023年款M2 MacBook Air上测试)。
  • Lance在召回率和查询延迟之间取得了很好的平衡。

Vector Search Performance

  1. 与Parquet的对比

在Oxford Pet数据集上的测试显示:

  • 对于分析查询,Lance比直接读取原始元数据快50-100倍。
  • 对于批量随机访问,Lance比Parquet和原始文件快100倍。

这些性能优势使Lance成为处理大规模机器学习数据集的理想选择。

Lance的应用场景

  1. 搜索引擎和特征存储

Lance的高性能向量搜索功能使其非常适合构建搜索引擎和特征存储系统。例如,在推荐系统中,可以使用Lance存储用户和物品的嵌入向量,并快速检索相似项。

  1. 大规模机器学习训练

Lance的高效IO和随机访问性能可以显著提升大规模机器学习模型的训练速度。特别是在处理TB级别的数据集时,Lance的优势更加明显。

  1. 嵌套数据处理

对于包含复杂嵌套结构的数据(如图像检测结果、传感器数据等),Lance的列式存储和高效过滤功能可以大大简化数据处理流程。

  1. 机器学习实验管理

Lance的版本控制功能为机器学习实验提供了强大的支持。研究人员可以轻松追踪数据集的变化,确保实验的可重复性。

Lance的未来发展

Lance团队正在积极开发更多功能,以进一步增强其在机器学习领域的应用:

  1. 快速更新: 计划通过预写日志(WAL)支持高效的数据更新操作。
  2. 丰富的二级索引: 开发倒排索引,支持对标签和注释字段的模糊搜索。
  3. 更广泛的生态系统集成: 计划与更多机器学习框架和工具集成。

结论

Lance作为一种专为机器学习优化的现代数据格式,正在改变我们处理和管理机器学习数据的方式。它的高性能、灵活性和丰富功能使其成为构建下一代机器学习基础设施的理想选择。

随着机器学习技术的不断发展,数据管理的重要性只会越来越高。Lance的出现为解决这一挑战提供了一个强有力的工具。无论是在学术研究还是工业应用中,Lance都有潜力成为机器学习数据管理的新标准。

对于数据科学家和机器学习工程师来说,探索和采用Lance可能会为他们的工作带来显著的效率提升。随着Lance社区的不断壮大和功能的持续完善,我们有理由期待它在机器学习领域发挥越来越重要的作用。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多