Knowhere: 开源向量搜索引擎的新星

RayRay
Knowhere源代码构建单元测试依赖安装系统要求Github开源项目

Knowhere: 开源向量搜索引擎的新星

随着人工智能和机器学习技术的快速发展,向量搜索在各种应用场景中扮演着越来越重要的角色。Knowhere作为一个新兴的开源向量搜索引擎,正在吸引越来越多开发者和研究人员的关注。本文将深入探讨Knowhere的特性、架构、使用方法以及如何参与贡献这个令人兴奋的项目。

Knowhere简介

Knowhere是一个用C++编写的独立项目,作为Milvus向量数据库的内部核心组件。它集成了多种先进的向量索引和搜索算法,如FAISS(Facebook AI Similarity Search)和HNSW(Hierarchical Navigable Small World)等,为高维向量的高效相似性搜索提供了强大支持。

Knowhere Logo

Knowhere的主要目标是为开发者提供一个灵活、高效且易于使用的向量搜索解决方案。无论是在学术研究还是工业应用中,Knowhere都能够满足各种复杂的向量搜索需求。

Knowhere的核心特性

  1. 多算法支持: Knowhere集成了多种先进的向量索引算法,包括FAISS、HNSW等,使用户可以根据具体需求选择最合适的算法。

  2. 高性能: 通过C++实现和优化,Knowhere能够提供卓越的搜索性能,特别适合处理大规模高维向量数据。

  3. 跨平台兼容: Knowhere支持多种操作系统,包括Ubuntu、CentOS和MacOS(包括x86_64和Apple Silicon架构)。

  4. 可扩展性: 作为一个开源项目,Knowhere具有良好的可扩展性,允许开发者根据需求进行定制和扩展。

  5. 与Milvus集成: 作为Milvus的核心组件,Knowhere能够无缝集成到Milvus生态系统中,为用户提供端到端的向量数据库解决方案。

Knowhere的架构设计

Knowhere的架构设计注重模块化和灵活性。它主要包含以下几个核心组件:

  1. 索引模块: 负责构建和管理各种类型的向量索引,如FAISS、HNSW等。

  2. 搜索模块: 实现高效的向量相似性搜索算法。

  3. 存储模块: 管理向量数据的存储和检索。

  4. 公共工具: 提供各种辅助功能,如数据预处理、距离计算等。

  5. API接口: 提供C++和Python接口,方便开发者集成和使用。

这种模块化的设计使得Knowhere能够灵活地适应不同的应用场景,同时也便于开发者进行扩展和定制。

如何使用Knowhere

系统要求

Knowhere支持多种Linux发行版和MacOS。以下是经过验证可以成功构建和运行Knowhere的操作系统列表:

  • Ubuntu 20.04 x86_64
  • Ubuntu 20.04 Aarch64
  • MacOS (x86_64)
  • MacOS (Apple Silicon)

从源码构建Knowhere

要从源码构建Knowhere,请按照以下步骤操作:

  1. 安装依赖:
sudo apt install build-essential libopenblas-dev libaio-dev python3-dev python3-pip pip3 install conan==1.61.0 --user export PATH=$PATH:$HOME/.local/bin
  1. 克隆仓库并进入项目目录:
git clone https://github.com/zilliztech/knowhere.git cd knowhere
  1. 创建构建目录并进入:
mkdir build && cd build
  1. 使用Conan安装依赖并构建:
# 添加Conan远程仓库 conan remote add default-conan-local https://milvus01.jfrog.io/artifactory/api/conan/default-conan-local # 安装依赖(根据需求选择CPU或GPU版本,Debug或Release模式) conan install .. --build=missing -o with_ut=True -s compiler.libcxx=libstdc++11 -s build_type=Release # 使用Conan构建 conan build ..
  1. 运行单元测试(可选):
# Release模式 ./Release/tests/ut/knowhere_tests

使用Python接口

Knowhere还提供了Python接口,使得在Python环境中使用Knowhere变得更加便捷。以下是生成和安装Python wheel的步骤:

  1. 安装额外依赖:
sudo apt install swig python3-dev pip3 install bfloat16
  1. 构建Python wheel:
cd python python3 setup.py bdist_wheel
  1. 安装生成的wheel文件:
pip3 install dist/pyknowhere-0.0.0-cp38-cp38-linux_x86_64.whl

通过这些步骤,您就可以在Python环境中导入和使用Knowhere了。

参与Knowhere开发

Knowhere是一个开源项目,欢迎社区成员参与贡献。以下是一些参与方式:

  1. 提交Issue: 如果您发现了bug或有新的功能建议,可以在GitHub仓库中提交Issue

  2. 提交Pull Request: 如果您想直接贡献代码,可以fork仓库,修改代码后提交Pull Request。

  3. 改进文档: 完善文档对于开源项目的发展至关重要。您可以帮助改进Knowhere的文档。

  4. 参与讨论: 在GitHub Discussions或其他社区渠道参与技术讨论,分享您的见解和经验。

代码规范

为了确保代码质量和一致性,Knowhere项目使用了pre-commit钩子来进行代码检查。在提交Pull Request之前,请确保运行以下命令安装和配置pre-commit:

pip3 install pre-commit pre-commit install --hook-type pre-commit --hook-type pre-push

此外,还需要安装clang-format和clang-tidy工具:

# Ubuntu apt install clang-format clang-tidy # MacOS brew install llvm ln -s "$(brew --prefix llvm)/bin/clang-format" "/usr/local/bin/clang-format" ln -s "$(brew --prefix llvm)/bin/clang-tidy" "/usr/local/bin/clang-tidy"

Knowhere的应用场景

Knowhere作为一个强大的向量搜索引擎,在多个领域都有广泛的应用前景:

  1. 图像检索: 在大规模图像库中快速查找相似图像,适用于图像搜索引擎、视觉商品搜索等场景。

  2. 自然语言处理: 支持语义相似度搜索,可用于文本分类、情感分析、问答系统等应用。

  3. 推荐系统: 基于用户行为或商品特征的向量表示,实现高效的个性化推荐。

  4. 异常检测: 在高维特征空间中识别异常数据点,适用于金融风控、网络安全等领域。

  5. 生物信息学: 在基因序列或蛋白质结构分析中进行相似性搜索。

  6. 音频处理: 实现音乐推荐、音频指纹识别等功能。

Knowhere的未来展望

作为一个活跃的开源项目,Knowhere正在不断发展和改进。以下是一些可能的未来发展方向:

  1. 算法优化: 持续优化现有算法,提高搜索效率和准确性。

  2. 新算法集成: 集成更多先进的向量索引和搜索算法。

  3. 分布式支持: 增强分布式环境下的性能和可扩展性。

  4. 云原生适配: 提供更好的云原生支持,便于在云环境中部署和管理。

  5. 深度学习集成: 与深度学习框架更紧密地集成,支持端到端的AI应用开发。

  6. 生态系统扩展: 开发更多语言的API接口,扩大Knowhere的应用范围。

结论

Knowhere作为一个强大而灵活的开源向量搜索引擎,为高维向量数据的高效检索提供了优秀的解决方案。它不仅集成了多种先进算法,还提供了友好的接口和优秀的性能,使其成为构建大规模向量搜索应用的理想选择。

无论您是研究人员、开发者还是企业用户,Knowhere都能为您的项目带来价值。我们鼓励更多的人参与到Knowhere的开发和使用中来,共同推动向量搜索技术的发展和应用。

随着AI和大数据技术的不断进步,向量搜索的重要性只会越来越突出。Knowhere作为这个领域的新星,正在为构建下一代智能应用铺平道路。让我们共同期待Knowhere的光明未来,并积极参与到这个激动人心的开源项目中来!

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多