深入探讨实体人工智能:从感知到交互的全面综述

RayRay
Embodied AI机器人模拟器具身感知具身交互具身智能体Github开源项目

实体人工智能:从虚拟走向现实的智能系统

近年来,随着人工智能技术的飞速发展,实体人工智能(Embodied AI)逐渐成为学术界和产业界关注的焦点。实体人工智能旨在将智能系统嵌入物理实体中,使其能够感知环境、与环境交互并完成复杂任务。与传统的"互联网人工智能"不同,实体人工智能更加注重智能体在真实世界中的应用,为实现通用人工智能(AGI)提供了新的可能性。

本文将从实体AI的多个方面进行全面综述,包括模拟器、感知、交互、智能体以及从仿真到现实的适应等关键技术,为读者呈现该领域的最新进展和未来发展方向。

实体AI模拟器:搭建虚拟实验平台

模拟器在实体AI研究中扮演着至关重要的角色,它为智能体提供了一个安全、高效且可控的虚拟环境。近年来,随着计算机图形学和物理引擎的进步,越来越多的高保真度模拟器被开发出来,为实体AI的研究提供了强有力的支持。

目前,实体AI模拟器主要分为两类:通用模拟器和基于真实场景的模拟器。通用模拟器如Gazebo、NVIDIA Isaac Sim等,可以模拟各种机器人平台和环境,具有较强的通用性。而基于真实场景的模拟器如iGibson、AI2-THOR等,则专注于模拟真实世界的特定场景,如室内环境、城市街道等,为实体AI提供了更加真实的训练和测试环境。

NVIDIA Isaac Sim模拟器界面

这些模拟器不仅可以生成高质量的视觉、听觉等感知数据,还可以模拟物理交互,为实体AI的训练和测试提供了全面的支持。例如,最近发布的PhyScene和Holodeck等模拟器,可以根据自然语言指令生成可交互的3D环境,进一步提升了模拟器的灵活性和真实性。

实体感知:理解环境的关键

实体感知是实体AI系统与环境交互的基础,主要包括视觉感知、听觉感知等多种模态。其中,视觉感知是最常见和最重要的感知方式之一。近年来,深度学习技术的发展极大地推动了视觉感知能力的提升。

在3D视觉感知方面,PointNet、PointNet++等基于点云的深度学习方法开创了直接处理无序点云数据的先河。随后,Point Transformer等基于Transformer架构的方法进一步提升了点云处理的性能。最近,研究人员提出了基于状态空间模型的PointMamba等方法,为点云处理提供了新的思路。

Point Transformer架构示意图

在SLAM(同时定位与地图构建)领域,研究人员提出了各种融合语义信息的方法,如SO-SLAM、SG-SLAM等,以提高SLAM系统在动态环境中的鲁棒性。此外,基于深度学习的端到端SLAM方法也取得了显著进展,如GS-SLAM等工作展示了结合3D高斯溅射技术的SLAM系统的潜力。

实体交互:从感知到行动

实体交互是实体AI系统与环境进行物理交互的能力,包括操纵、抓取等任务。近年来,研究人员提出了各种基于深度强化学习和模仿学习的方法来提升实体AI系统的交互能力。

例如,在机器人操纵领域,研究人员提出了基于视觉和触觉反馈的端到端学习方法,使机器人能够适应不同的物体和任务。在抓取任务中,结合深度学习和几何分析的方法显著提高了抓取成功率。此外,一些研究还探索了如何利用大规模语言模型来指导机器人的交互行为,为实现更加灵活和通用的交互能力提供了新的思路。

实体智能体:从单一任务到通用智能

实体智能体是实体AI系统的核心,它需要整合感知、规划和控制等多个模块,以完成复杂的任务。近年来,随着深度学习和强化学习技术的发展,实体智能体的能力得到了显著提升。

在导航任务中,研究人员提出了各种基于视觉和语言的导航方法,如VLN-BERT等,使智能体能够根据自然语言指令在复杂环境中进行导航。在多任务学习方面,一些工作探索了如何设计通用的实体智能体架构,以适应不同的任务和环境。

最近,随着大规模多模态模型的兴起,如何将这些强大的模型应用到实体智能体中成为了研究热点。例如,一些工作尝试将GPT等大规模语言模型与机器人控制系统结合,以实现更加灵活和智能的人机交互。

从仿真到现实:跨越虚实鸿沟

将在模拟器中训练的实体AI系统迁移到现实世界中是一个重要的挑战。为了解决这个问题,研究人员提出了各种仿真到现实(Sim-to-Real)的适应方法。

域随机化是一种常用的Sim-to-Real方法,它通过在训练时随机化模拟环境的参数,来提高模型在真实环境中的鲁棒性。此外,一些研究还探索了如何利用真实世界的少量数据来微调在模拟器中训练的模型,以更好地适应现实环境。

最近,一些研究开始关注如何构建更加真实的模拟环境,以缩小虚拟和现实之间的差距。例如,RoboGen等工作提出了利用生成式AI技术来创建高度真实的模拟环境,为Sim-to-Real适应提供了新的可能性。

RoboGen生成的模拟环境示例

未来展望

实体人工智能作为一个快速发展的领域,仍然面临着诸多挑战和机遇。未来的研究方向可能包括:

  1. 发展更加通用和鲁棒的感知算法,使实体AI系统能够适应各种复杂环境。

  2. 提升实体AI系统的交互能力,使其能够完成更加复杂和精细的操作任务。

  3. 探索如何将大规模语言模型和多模态模型与实体AI系统深度融合,以实现更加智能和灵活的人机交互。

  4. 开发更加真实和高效的模拟环境,缩小虚拟和现实之间的差距。

  5. 研究实体AI系统的安全性和可解释性,为其在现实世界中的应用奠定基础。

总的来说,实体人工智能为实现真正的通用人工智能提供了一条promising的道路。随着技术的不断进步,我们有理由相信,未来的AI系统将能够更加自然地融入物理世界,为人类社会带来更多的价值和便利。

结语

本文对实体人工智能领域进行了全面的综述,涵盖了从模拟器、感知、交互到实体智能体和仿真到现实适应等多个方面。我们看到,这个领域正在快速发展,各种新技术和新方法不断涌现。未来,随着深度学习、强化学习等技术的进一步发展,以及大规模多模态模型的广泛应用,实体AI系统有望实现更加强大和通用的智能,为人类社会带来深远的影响。

作为一个充满活力和潜力的研究领域,实体人工智能需要来自计算机科学、机器人学、认知科学等多个学科的共同努力。我们期待看到更多创新性的研究成果,推动这个领域向着更加智能、更加实用的方向不断前进。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多