Friendly Stable Audio Tools: 重构和增强的音频生成工具集

RayRay
Stable AudioAI音频生成模型训练深度学习音乐生成Github开源项目

介绍 Friendly Stable Audio Tools

Friendly Stable Audio Tools 是一个基于 Stability AI 开源的 stable-audio-tools 项目进行重构和增强的音频生成工具集。这个项目旨在为音频和音乐生成模型提供更加友好和实用的开发环境。

Stable Audio 2.0

主要特性

  1. 重构的代码结构,提高了可读性和可用性
  2. 新增了评估和使用自训练模型的实用脚本
  3. 提供了如何训练 Stable Audio 2.0 等模型的详细指导
  4. 为 Stable Audio Open 1.0 提供了详细文档和便捷使用脚本

Stable Audio Open 的开源发布

值得注意的是,Stability AI 最近开源了 Stable Audio 的预训练模型。这是音频生成领域的一个重要里程碑。

对于想要尝试 Stable Audio Open 的用户,本项目提供了详细的使用说明文档:

此外,本项目还支持通过 YAML 文件输入提示词,实现多 GPU/节点的批量生成功能。示例配置文件可以在这里找到:generate_conditions.yaml

环境要求与安装

环境要求

  • PyTorch 2.0 或更高版本(用于支持 Flash Attention)
  • Python 3.8.10 或更高版本

安装步骤

  1. 克隆仓库:

    git clone https://github.com/yukara-ikemiya/friendly-stable-audio-tools.git
    
  2. 进入项目目录:

    cd friendly-stable-audio-tools
    
  3. 安装依赖:

    pip install .
    
  4. 解决可能的 Accelerate 导入错误:

    pip uninstall -y transformer-engine
    

构建训练环境

为了简化训练环境的搭建,推荐使用容器系统如 Docker 或 Singularity,而不是在每台 GPU 机器上单独安装依赖。以下是创建 Docker 和 Singularity 容器的步骤:

  1. 创建 Docker 镜像:

    NAME=friendly-stable-audio-tools
    docker build -t ${NAME} -f ./container/${NAME}.Dockerfile .
    
  2. 将 Docker 镜像转换为 Singularity 容器:

    singularity build friendly-stable-audio-tools.sif docker-daemon://friendly-stable-audio-tools
    

执行上述脚本后,将在工作目录中创建 friendly-stable-audio-tools.sif 文件。

Gradio 界面

本项目提供了一个基于 Gradio 的简单界面,用于测试训练好的模型。例如,要为 stable-audio-open-1.0 模型创建界面,可以运行:

python3 ./run_gradio.py --pretrained-name stabilityai/stable-audio-open-1.0

Gradio interface

run_gradio.py 脚本支持多个命令行参数,包括:

  • --pretrained-name: Hugging Face 上的模型名称
  • --model-config: 本地模型配置文件路径
  • --ckpt-path: 本地模型检查点文件路径
  • --pretransform-ckpt-path: 预转换检查点路径
  • --username--password: 设置 Gradio 演示的登录信息
  • --model-half: 是否使用半精度
  • --tmp-dir: 临时输出文件保存目录

训练流程

配置文件准备

在开始训练之前,需要准备两个配置文件:

  1. 模型配置文件
  2. 数据集配置文件

从头开始训练

要开始训练,在仓库根目录运行 train.py 脚本:

python3 train.py --dataset-config /path/to/dataset/config --model-config /path/to/model/config --name my_experiment

微调模型

微调涉及从预训练检查点恢复训练:

  • 使用 --ckpt-path 参数从包装的检查点恢复训练
  • 使用 --pretrained-ckpt-path 参数从预训练的解包模型开始新的训练

模型解包

stable-audio-tools 使用 PyTorch Lightning 来实现多 GPU 和多节点训练。训练过程中,模型被包装在一个"训练包装器"中,这增加了检查点文件的大小。unwrap_model.py 脚本用于解包模型检查点:

python3 unwrap_model.py --model-config /path/to/model/config --ckpt-path /path/to/wrapped/ckpt.ckpt --name /new/path/to/new_ckpt_name

训练 Stable Audio 2.0

准备工作

  1. 准备 CLAP 编码器检查点:

    • LAION CLAP 仓库 下载预训练的 CLAP 检查点
    • 将检查点文件存储在选定的目录中
    • 编辑 Stable Audio 2.0 的模型配置文件,设置 clap_ckpt_path
  2. 准备音频和元数据:

    • 使用 JSON 格式的元数据,包含 prompt 字段
    • 将元数据文件与对应的音频文件放在同一目录下,文件名相同

第一阶段: VAE-GAN (压缩模型)

  1. 训练 VAE-GAN:

    singularity exec --nv --pwd $ROOT_DIR -B $ROOT_DIR -B $DATASET_DIR \
      --env WANDB_API_KEY=$WANDB_API_KEY \
      ${CONTAINER_PATH} \
      torchrun --nproc_per_node gpu --master_port ${PORT} \
      ${ROOT_DIR}/train.py \
        --dataset-config ${DATASET_CONFIG} \
        --model-config ${MODEL_CONFIG} \
        --name "vae_training" \
        --num-gpus 8 \
        --batch-size ${BATCH_SIZE} \
        --num-workers 8 \
        --save-dir ${OUTPUT_DIR}
    
  2. 模型解包:

    singularity exec --nv --pwd $ROOT_DIR -B $ROOT_DIR \
      --env WANDB_API_KEY=$WANDB_API_KEY \
      ${CONTAINER_PATH} \
      torchrun --nproc_per_node gpu --master_port ${PORT} \
        ${ROOT_DIR}/unwrap_model.py \
        --model-config ${MODEL_CONFIG} \
        --ckpt-path ${CKPT_PATH} \
        --name ${OUTPUT_PATH}
    
  3. 重构测试:

    singularity exec --nv --pwd $ROOT_DIR -B $ROOT_DIR -B $DATASET_DIR \
      --env WANDB_API_KEY=$WANDB_API_KEY \
      ${CONTAINER_PATH} \
      torchrun --nproc_per_node gpu --master_port ${PORT} \
        ${ROOT_DIR}/reconstruct_audios.py \
        --model-config ${MODEL_CONFIG} \
        --ckpt-path ${UNWRAP_CKPT_PATH} \
        --audio-dir ${AUDIO_DIR} \
        --output-dir ${OUTPUT_DIR} \
        --frame-duration ${FRAME_DURATION} \
        --overlap-rate ${OVERLAP_RATE} \
        --batch-size ${BATCH_SIZE}
    

第二阶段: 扩散变换器 (DiT)

确保完成所有先决条件并训练了 VAE 模型后,可以开始训练 DiT 模型:

singularity exec --nv --pwd $ROOT_DIR -B $ROOT_DIR -B $DATASET_DIR \
  --env WANDB_API_KEY=$WANDB_API_KEY \
  ${CONTAINER_PATH} \
  torchrun --nproc_per_node gpu --master_port ${PORT} \
    ${ROOT_DIR}/train.py \
    --dataset-config ${DATASET_CONFIG} \
    --model-config ${MODEL_CONFIG} \
    --pretransform-ckpt-path ${PRETRANSFORM_CKPT} \
    --name "dit_training" \
    --num-gpus ${NUM_GPUS} \
    --batch-size ${BATCH_SIZE} \
    --save-dir ${OUTPUT_DIR}

结语

Friendly Stable Audio Tools 为音频生成模型的开发和使用提供了一个强大而灵活的工具集。通过重构和增强原始的 stable-audio-tools,本项目不仅提高了代码的可读性和可用性,还添加了许多实用功能和详细文档,使得研究人员和开发者能够更轻松地探索和实现音频生成模型。

无论您是想要训练自己的 Stable Audio 2.0 模型,还是想要使用预训练的 Stable Audio Open 1.0 模型,本项目都为您提供了必要的工具和指导。我们期待看到更多创新的音频生成应用从这个项目中诞生。

🎵 让我们一起探索音频生成的无限可能吧! 🎵

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多