EmbodiedScan: 面向具身人工智能的全面多模态3D感知套件

RayRay
EmbodiedScanMMScan3D感知多模态深度学习Github开源项目

EmbodiedScan:面向具身人工智能的全面多模态3D感知套件

在计算机视觉和机器人领域,具身代理被期望能够探索环境并执行人类指令。这就需要它们能够充分理解基于第一人称观察的3D场景,并将其转化为语言进行交互。然而,传统研究更多关注于从全局视角进行场景级输入和输出的设置。为了弥补这一差距,研究人员推出了EmbodiedScan,这是一个多模态、以自我为中心的3D感知数据集和基准测试,用于全面的3D场景理解。

EmbodiedScan数据集概览

EmbodiedScan包含了超过5000次扫描,涵盖了100万个以自我为中心的RGB-D视图、100万个语言提示、16万个跨越760多个类别的3D定向框(部分与LVIS对齐),以及80个常见类别的密集语义占用。这个庞大而丰富的数据集为研究人员提供了前所未有的资源,以开发和测试先进的3D感知算法。

Image 1: a series of images showing different rooms and different images

如上图所示,EmbodiedScan提供了多样化的室内场景数据,包括不同房间类型和视角的图像。这些数据不仅包括视觉信息,还包括深度信息和语言描述,为全面的场景理解提供了基础。

Embodied Perceptron:基线框架

基于EmbodiedScan数据集,研究人员还提出了一个名为Embodied Perceptron的基线框架。这个框架能够处理任意数量的多模态输入,展示了出色的3D感知能力。

Image 2: a diagram showing the process of a machine learning system

如上图所示,Embodied Perceptron接受任意数量视图的RGB-D序列和文本作为多模态输入。它使用经典编码器为每种模态提取特征,并采用密集和同构稀疏融合与相应的解码器进行不同的预测。集成了文本特征的3D特征可以进一步用于语言引导的理解。

这个框架在两系列基准测试中都表现出色:

  1. 基础3D感知任务
  2. 语言引导任务

更令人兴奋的是,Embodied Perceptron在现实世界中也展现了卓越的性能,即使在不同的RGB-D传感器和环境中也能很好地工作。

主要贡献与创新

  1. 大规模多模态数据集: EmbodiedScan是目前最大规模的多模态3D感知数据集之一,为研究人员提供了宝贵的资源。

  2. 自我为中心的视角: 与传统的全局视角不同,EmbodiedScan采用自我为中心的视角,更贴近实际机器人和AI代理的感知方式。

  3. 语言引导的场景理解: 通过引入大量语言提示,EmbodiedScan为语言引导的3D场景理解开辟了新的研究方向。

  4. 全面的任务设置: 从基础的3D感知到高级的语言引导任务,EmbodiedScan提供了一系列具有挑战性的任务设置。

  5. Embodied Perceptron框架: 这个基线框架展示了处理多模态输入的能力,为未来的研究提供了良好的起点。

技术细节与实现

EmbodiedScan的实现涉及多个技术方面:

  1. 数据收集与处理:

    • 使用了ScanNet v2、3RScan和Matterport3D等多个数据源
    • 开发了专门的工具来提取和处理图像、深度信息等
  2. 注释生成:

    • 使用SAM(Segment Anything Model)辅助生成高质量的3D注释
    • 开发了半自动化的流程来生成语言提示和语义标签
  3. 框架实现:

    • Embodied Perceptron基于PyTorch实现
    • 使用了多种先进的神经网络架构,如Transformer和PointNet++
  4. 评估指标:

    • 开发了一系列评估指标来衡量3D检测、语义分割和语言引导任务的性能

未来研究方向

EmbodiedScan为3D场景理解和具身AI开辟了多个promising的研究方向:

  1. 多模态融合: 如何更有效地融合视觉、深度和语言信息仍是一个开放问题。

  2. 迁移学习: 研究如何将在EmbodiedScan上训练的模型迁移到新的环境和任务中。

  3. 实时性能: 提高模型的推理速度,使其能在实时系统中应用。

  4. 交互式学习: 探索如何让AI代理通过与环境交互来持续学习和改进。

  5. 跨语言理解: 扩展当前的英语提示到多语言设置,增强模型的语言理解能力。

结论

EmbodiedScan及其配套的Embodied Perceptron框架代表了3D场景理解和具身AI研究的重要进展。通过提供丰富的多模态数据和全面的评估基准,它为研究人员提供了宝贵的资源,以推动这一领域的发展。随着更多研究者参与并基于这一平台开展工作,我们有理由期待在不久的将来,具身AI将在更复杂的实际环境中展现出令人惊叹的能力。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多