CVPR 2024论文与代码汇总:计算机视觉领域最新研究进展

RayRay
CVPR 2024计算机视觉人工智能机器学习深度学习Github开源项目

CVPR 2024论文与代码汇总:计算机视觉领域最新研究进展

计算机视觉与模式识别会议(CVPR)作为计算机视觉领域最具影响力的学术会议之一,每年都会吸引全球顶尖研究机构和企业提交大量高质量论文。CVPR 2024即将于今年6月在美国西雅图举行,目前已经公布了部分接收论文名单。本文将对CVPR 2024的论文及其开源代码进行全面梳理和总结,为读者呈现计算机视觉领域的最新研究进展。

3D高斯散射(3D Gaussian Splatting)

3D高斯散射是近期兴起的一种新型三维场景表示和渲染方法,相比于神经辐射场(NeRF)具有更快的渲染速度和更好的细节表现。CVPR 2024在该方向上接收了多篇高质量论文:

  1. Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering

该论文提出了一种结构化的3D高斯表示方法,通过引入空间结构信息来提高渲染质量和效率。论文主页:https://city-super.github.io/scaffold-gs/

  1. GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis

这项工作专注于人体新视角合成任务,提出了一种可泛化的像素级3D高斯散射方法,实现了实时渲染。项目主页:https://shunyuanzheng.github.io/GPS-Gaussian

  1. GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians

该论文将3D高斯散射应用于人体avatar建模,仅需单个视频即可生成可动画的逼真人体模型。代码开源地址:https://github.com/huliangxiao/GaussianAvatar

GaussianAvatar示例图

  1. GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting

这项工作聚焦于3D场景编辑,提出了一种基于高斯散射的快速可控编辑方法。代码已在GitHub开源:https://github.com/buaacyw/GaussianEditor

  1. Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction

该论文提出了可变形3D高斯模型,用于从单目视频重建高保真动态场景。项目主页:https://ingra14m.github.io/Deformable-Gaussians/

这些工作从不同角度推动了3D高斯散射技术的发展,为三维场景表示和渲染开辟了新的研究方向。

多模态大语言模型(MLLM)

随着大语言模型(LLM)的蓬勃发展,将视觉能力赋予LLM成为了研究热点。CVPR 2024收录了多篇关于多模态大语言模型的论文:

  1. mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration

该论文提出了一种新的多模态协作机制,显著提升了模型的多模态理解和生成能力。代码已开源:https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2

  1. Link-Context Learning for Multimodal LLMs

这项工作引入了链接上下文学习方法,增强了多模态LLM的跨模态关联能力。代码地址:https://github.com/isekai-portal/Link-Context-Learning/tree/main

  1. OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation

该论文针对多模态LLM的幻觉问题,提出了过度信任惩罚和回顾分配机制。项目代码:https://github.com/shikiw/OPERA

  1. Making Large Multimodal Models Understand Arbitrary Visual Prompts

这项工作探索了如何让多模态LLM理解任意视觉提示,大幅提升了模型的视觉理解能力。项目主页:https://vip-llava.github.io/

VIP-LLaVA示例图

  1. Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding

该论文提出了一种统一的视觉表示方法,赋予LLM同时理解图像和视频的能力。代码开源地址:https://github.com/PKU-YuanGroup/Chat-UniVi

这些研究工作从不同角度推动了多模态大语言模型的发展,为构建更强大的视觉-语言AI系统奠定了基础。

目标检测(Object Detection)

目标检测作为计算机视觉的基础任务之一,一直是CVPR的研究热点。今年CVPR在该方向也收录了多篇创新性工作:

  1. DETRs Beat YOLOs on Real-time Object Detection

该论文证明了基于DETR的方法在实时目标检测任务上可以超越YOLO系列模型,打破了以往的认知。代码已开源:https://github.com/lyuwenyu/RT-DETR

  1. Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

这项工作聚焦于日夜场景的域适应问题,提出了一种零样本的域适应方法来提升检测性能。项目代码:https://github.com/ZPDu/Boosting-Object-Detection-with-Zero-Shot-Day-Night-Domain-Adaptation

  1. YOLO-World: Real-Time Open-Vocabulary Object Detection

该论文将开放词汇的能力引入YOLO框架,实现了实时的开放词汇目标检测。代码地址:https://github.com/AILab-CVC/YOLO-World

YOLO-World示例图

  1. Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement

这项工作通过引入层次化显著性过滤机制来增强DETR模型的检测性能。项目代码:https://github.com/xiuqhou/Salience-DETR

这些研究从不同角度推动了目标检测技术的发展,为构建更高效、更准确的检测系统提供了新的思路。

扩散模型(Diffusion Models)

扩散模型作为生成模型的新范式,在图像生成、编辑等任务上展现出了强大的性能。CVPR 2024收录了多篇关于扩散模型的创新工作:

  1. InstanceDiffusion: Instance-level Control for Image Generation

该论文提出了一种实例级控制的图像生成方法,可以精确控制生成图像中的各个实例。项目主页:https://people.eecs.berkeley.edu/~xdwang/projects/InstDiff/

  1. Residual Denoising Diffusion Models

这项工作提出了残差去噪扩散模型,通过引入残差学习来提升模型性能。代码开源地址:https://github.com/nachifur/RDDM

  1. DeepCache: Accelerating Diffusion Models for Free

该论文提出了一种无需额外训练的扩散模型加速方法,大幅提升了推理速度。项目代码:https://github.com/horseee/DeepCache

  1. DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations

这项工作聚焦于风格化扩散模型,通过解耦表示来提高生成效率和质量。项目主页:https://tianhao-qi.github.io/DEADiff/

DEADiff示例图

  1. SVGDreamer: Text Guided SVG Generation with Diffusion Model

该论文将扩散模型应用于SVG图像生成,实现了文本引导的矢量图生成。项目主页:https://ximinng.github.io/SVGDreamer-project/

这些研究工作从不同角度推动了扩散模型的发展,为构建更强大、更灵活的生成模型奠定了基础。

总结与展望

CVPR 2024的论文涵盖了计算机视觉领域的多个研究方向,包括但不限于3D场景表示、多模态大语言模型、目标检测、扩散模型等。这些研究工作不仅推动了学术前沿的发展,也为实际应用提供了新的技术支持。

值得注意的是,今年的研究趋势呈现出以下特点:

  1. 多模态融合成为热点,特别是视觉与语言的深度结合。
  2. 3D表示和渲染技术取得重要突破,高斯散射等新方法展现出巨大潜力。
  3. 生成模型,尤其是扩散模型,在各种视觉任务中的应用不断拓展。
  4. 实时性和效率优化仍是研究重点,多个方向都在追求更快速的算法。

展望未来,我们可以预见计算机视觉领域将继续朝着更智能、更高效、更实用的方向发展。多模态AI、3D视觉、生成式AI等方向可能会成为未来研究的重点。同时,如何将这些先进技术落地到实际应用中,也将是一个重要的研究方向。

CVPR作为计算机视觉领域的顶级会议,汇聚了全球顶尖研究者的智慧结晶。本文总结的这些研究工作仅是冰山一角,相信随着会议的正式召开,我们将看到更多激动人心的研究成果。让我们共同期待CVPR 2024为计算机视觉领域带来的新突破和新机遇。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多