CARLA Garage: 揭示端到端自动驾驶模型的隐藏偏差

RayRay
CARLA自动驾驶端到端模型计算机视觉深度学习Github开源项目

CARLA Garage:探索端到端自动驾驶模型的隐藏偏差

CARLA garage

自动驾驶技术正在快速发展,但端到端驾驶模型中仍然存在一些隐藏的偏差和局限性。为了揭示和解决这些问题,来自图宾根大学自主视觉小组的研究人员开发了CARLA Garage项目。这个开源项目为自动驾驶研究提供了强大的工具和基准,帮助研究人员更好地理解和改进端到端驾驶模型。

项目概述

CARLA Garage项目源于研究人员Bernhard Jaeger、Kashyap Chitta和Andreas Geiger发表在ICCV 2023上的论文《Hidden Biases of End-to-End Driving Models》。该项目提供了清晰可配置的代码、详细的文档以及性能强大的预训练模型权重,可以作为基于CARLA模拟器进行端到端自动驾驶研究的良好起点。

CARLA Garage的主要目标包括:

  1. 揭示端到端驾驶模型中的隐藏偏差
  2. 提供可复现的基准和评估方法
  3. 开发新的训练和评估技术
  4. 促进自动驾驶研究社区的合作与交流

主要功能

CARLA Garage项目提供了一系列强大的功能:

  1. 预训练模型: 提供了在不同基准上训练的高性能预训练模型,可直接用于评估或进一步微调。

  2. 数据集生成: 包含用于生成大规模自动驾驶数据集的工具和脚本。

  3. 模型训练: 提供了灵活的训练框架,支持多GPU训练、继续训练等功能。

  4. 评估基准: 实现了多个具有挑战性的评估基准,如longest6和LAV。

  5. 可视化工具: 包含用于可视化模型预测和评估结果的工具。

  6. CARLA集成: 与CARLA模拟器深度集成,支持复杂场景的模拟。

安装与使用

要开始使用CARLA Garage,您需要按照以下步骤进行安装:

  1. 克隆项目仓库:
git clone https://github.com/autonomousvision/carla_garage.git
cd carla_garage
  1. 安装CARLA 0.9.10.1

  2. 创建并激活conda环境:

conda env create -f environment.yml
conda activate garage
  1. 设置必要的环境变量,如CARLA_ROOT、WORK_DIR等。

完成安装后,您可以使用提供的脚本进行数据生成、模型训练和评估等操作。项目文档中详细说明了各个功能的使用方法。

评估基准

CARLA Garage实现了多个具有挑战性的评估基准,其中最重要的是longest6基准。该基准包含108条长路线,能够全面评估模型的性能。评估过程支持并行化,可以显著提高效率。

评估流程如下:

  1. 启动CARLA服务器
  2. 运行评估脚本leaderboard_evaluator_local.py
  3. 使用result_parser.py解析结果

为了更高效地进行评估,项目还提供了用于SLURM集群的并行化评估脚本。

模型训练

CARLA Garage提供了灵活的模型训练框架。主要训练脚本为train.py,支持多种配置选项:

  • 实验ID
  • 批量大小
  • 数据集路径
  • 训练设置(如是否使用waypoint head)
  • CPU核心数
  • 数据重复次数

此外,还支持两阶段训练策略,可以先训练感知骨干网络,再训练控制头。

数据集

项目发布了用于训练最终模型的数据集,大小约350GB。数据集采用CC BY 4.0许可证发布,可以通过提供的脚本下载:

cd /path/to/carla_garage/tools
bash download_data.sh

提交到CARLA排行榜

CARLA Garage提供了将模型提交到官方CARLA排行榜的完整流程:

  1. 创建Docker镜像
  2. 本地测试Docker容器
  3. 使用alpha工具提交到排行榜

这使得研究人员可以方便地将自己的模型与其他最先进的方法进行比较。

其他文档

除了主要功能外,CARLA Garage还提供了一些额外的文档:

  • 坐标系统说明
  • TransFuser模型家族的历史
  • 工程设计理念
  • 额外功能说明

这些文档有助于更深入地理解项目的技术细节和设计思路。

总结

CARLA Garage为自动驾驶研究提供了一个强大而全面的开源平台。通过揭示端到端驾驶模型的隐藏偏差,该项目有望推动自动驾驶技术的进一步发展。无论是初学者还是经验丰富的研究人员,都可以从这个项目中受益,更好地理解和改进端到端自动驾驶模型。

随着自动驾驶技术的不断进步,像CARLA Garage这样的开源项目将在推动整个领域发展方面发挥越来越重要的作用。我们期待看到更多研究人员参与到这个项目中来,共同推动自动驾驶技术的创新与进步。

如果您对CARLA Garage项目感兴趣,欢迎访问其GitHub仓库,为项目点亮星标,并考虑在您的研究中引用相关论文。让我们携手努力,共同推动自动驾驶技术的发展,为未来的智能交通系统奠定坚实的基础。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多