CARLA Garage: 揭示端到端自动驾驶模型的隐藏偏差

RayRay
CARLA自动驾驶端到端模型计算机视觉深度学习Github开源项目

CARLA Garage:探索端到端自动驾驶模型的隐藏偏差

CARLA garage

自动驾驶技术正在快速发展,但端到端驾驶模型中仍然存在一些隐藏的偏差和局限性。为了揭示和解决这些问题,来自图宾根大学自主视觉小组的研究人员开发了CARLA Garage项目。这个开源项目为自动驾驶研究提供了强大的工具和基准,帮助研究人员更好地理解和改进端到端驾驶模型。

项目概述

CARLA Garage项目源于研究人员Bernhard Jaeger、Kashyap Chitta和Andreas Geiger发表在ICCV 2023上的论文《Hidden Biases of End-to-End Driving Models》。该项目提供了清晰可配置的代码、详细的文档以及性能强大的预训练模型权重,可以作为基于CARLA模拟器进行端到端自动驾驶研究的良好起点。

CARLA Garage的主要目标包括:

  1. 揭示端到端驾驶模型中的隐藏偏差
  2. 提供可复现的基准和评估方法
  3. 开发新的训练和评估技术
  4. 促进自动驾驶研究社区的合作与交流

主要功能

CARLA Garage项目提供了一系列强大的功能:

  1. 预训练模型: 提供了在不同基准上训练的高性能预训练模型,可直接用于评估或进一步微调。

  2. 数据集生成: 包含用于生成大规模自动驾驶数据集的工具和脚本。

  3. 模型训练: 提供了灵活的训练框架,支持多GPU训练、继续训练等功能。

  4. 评估基准: 实现了多个具有挑战性的评估基准,如longest6和LAV。

  5. 可视化工具: 包含用于可视化模型预测和评估结果的工具。

  6. CARLA集成: 与CARLA模拟器深度集成,支持复杂场景的模拟。

安装与使用

要开始使用CARLA Garage,您需要按照以下步骤进行安装:

  1. 克隆项目仓库:
git clone https://github.com/autonomousvision/carla_garage.git
cd carla_garage
  1. 安装CARLA 0.9.10.1

  2. 创建并激活conda环境:

conda env create -f environment.yml
conda activate garage
  1. 设置必要的环境变量,如CARLA_ROOT、WORK_DIR等。

完成安装后,您可以使用提供的脚本进行数据生成、模型训练和评估等操作。项目文档中详细说明了各个功能的使用方法。

评估基准

CARLA Garage实现了多个具有挑战性的评估基准,其中最重要的是longest6基准。该基准包含108条长路线,能够全面评估模型的性能。评估过程支持并行化,可以显著提高效率。

评估流程如下:

  1. 启动CARLA服务器
  2. 运行评估脚本leaderboard_evaluator_local.py
  3. 使用result_parser.py解析结果

为了更高效地进行评估,项目还提供了用于SLURM集群的并行化评估脚本。

模型训练

CARLA Garage提供了灵活的模型训练框架。主要训练脚本为train.py,支持多种配置选项:

  • 实验ID
  • 批量大小
  • 数据集路径
  • 训练设置(如是否使用waypoint head)
  • CPU核心数
  • 数据重复次数

此外,还支持两阶段训练策略,可以先训练感知骨干网络,再训练控制头。

数据集

项目发布了用于训练最终模型的数据集,大小约350GB。数据集采用CC BY 4.0许可证发布,可以通过提供的脚本下载:

cd /path/to/carla_garage/tools
bash download_data.sh

提交到CARLA排行榜

CARLA Garage提供了将模型提交到官方CARLA排行榜的完整流程:

  1. 创建Docker镜像
  2. 本地测试Docker容器
  3. 使用alpha工具提交到排行榜

这使得研究人员可以方便地将自己的模型与其他最先进的方法进行比较。

其他文档

除了主要功能外,CARLA Garage还提供了一些额外的文档:

  • 坐标系统说明
  • TransFuser模型家族的历史
  • 工程设计理念
  • 额外功能说明

这些文档有助于更深入地理解项目的技术细节和设计思路。

总结

CARLA Garage为自动驾驶研究提供了一个强大而全面的开源平台。通过揭示端到端驾驶模型的隐藏偏差,该项目有望推动自动驾驶技术的进一步发展。无论是初学者还是经验丰富的研究人员,都可以从这个项目中受益,更好地理解和改进端到端自动驾驶模型。

随着自动驾驶技术的不断进步,像CARLA Garage这样的开源项目将在推动整个领域发展方面发挥越来越重要的作用。我们期待看到更多研究人员参与到这个项目中来,共同推动自动驾驶技术的创新与进步。

如果您对CARLA Garage项目感兴趣,欢迎访问其GitHub仓库,为项目点亮星标,并考虑在您的研究中引用相关论文。让我们携手努力,共同推动自动驾驶技术的发展,为未来的智能交通系统奠定坚实的基础。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多