Attention-OCR: 基于视觉注意力机制的图像文本识别模型

RayRay
Attention-OCRTensorflow图像识别OCR人工智能Github开源项目

attention-ocr

Attention-OCR简介

Attention-OCR是一个开源的图像文本识别模型,由Qi GuoYuntian Deng开发。该模型采用了卷积神经网络(CNN)和带有视觉注意力机制的序列到序列(seq2seq)架构,能够高效准确地从图像中识别和提取文本信息。

Attention-OCR的主要特点包括:

  1. 基于TensorFlow框架实现,易于使用和扩展
  2. 采用视觉注意力机制,提高了识别准确率
  3. 支持创建TFRecords数据集和导出训练好的模型
  4. 兼容Google Cloud ML Engine,可进行大规模训练

本文将深入介绍Attention-OCR的工作原理、模型架构、使用方法以及在实际应用中的表现。

模型原理

Attention-OCR的核心思想是结合CNN的图像特征提取能力和seq2seq模型的序列生成能力,再加上注意力机制来提高识别准确率。其工作流程如下:

  1. 首先,使用滑动CNN对输入图像进行特征提取。图像会被调整为32像素高,同时保持原始宽高比。

  2. 然后,在CNN的输出之上叠加一个LSTM网络,进一步处理序列信息。

  3. 最后,使用带有注意力机制的解码器生成最终的文本输出。

这种架构设计使得模型能够"关注"图像中的关键区域,从而更准确地识别文本内容。

OCR示例

上图展示了Attention-OCR的工作过程,可以看到模型能够准确地识别出图像中的文本"jungle"。

安装与使用

安装

Attention-OCR可以通过pip直接安装:

pip install aocr

注意:该项目依赖TensorFlow 1.x版本。目前正在计划升级到TensorFlow 2,欢迎贡献PR。

创建数据集

要训练Attention-OCR模型,首先需要准备一个TFRecords格式的数据集。可以使用以下命令创建数据集:

aocr dataset ./datasets/annotations-training.txt ./datasets/training.tfrecords
aocr dataset ./datasets/annotations-testing.txt ./datasets/testing.tfrecords

其中annotations文件是一个简单的文本文件,包含图像路径和对应的标签:

datasets/images/hello.jpg hello
datasets/images/world.jpg world

训练模型

使用以下命令开始训练:

aocr train ./datasets/training.tfrecords

训练过程可能需要较长时间,因为模型同时训练CNN和注意力模型。可以通过--steps-per-checkpoint参数设置检查点保存频率。

测试与可视化

训练完成后,可以使用以下命令测试模型:

aocr test ./datasets/testing.tfrecords

如果想可视化注意力结果,可以添加--visualize参数:

aocr test --visualize ./datasets/testing.tfrecords

这将在results/correct目录下生成可视化结果,如下图所示:

注意力可视化示例

模型导出与部署

训练完成后,可以将模型导出为SavedModel或frozen graph格式:

# SavedModel (默认)
aocr export ./exported-model

# Frozen graph
aocr export --format=frozengraph ./exported-model

导出的模型可以使用TensorFlow Serving部署为HTTP REST API:

tensorflow_model_server --port=9000 --rest_api_port=9001 --model_name=yourmodelname --model_base_path=./exported-model

然后就可以向运行的服务器发送预测请求:

curl -X POST 
  http://localhost:9001/v1/models/aocr:predict 
  -H 'cache-control: no-cache' 
  -H 'content-type: application/json' 
  -d '{
  "signature_name": "serving_default",
  "inputs": {
      "input": { "b64": "<your image encoded as base64>" }
  }
}'

Google Cloud ML Engine训练

Attention-OCR还支持在Google Cloud ML Engine上进行大规模训练。具体步骤如下:

  1. 设置环境变量:
export JOB_PREFIX="aocr"
export REGION="us-central1"
export GS_BUCKET="gs://aocr-bucket"
export DATASET_UPLOAD_PATH="training.tfrecords"
  1. 上传训练数据集:
gsutil cp ./datasets/training.tfrecords $GS_BUCKET/$DATASET_UPLOAD_PATH
  1. 启动ML Engine任务:
export NOW=$(date +"%Y%m%d_%H%M%S")
export JOB_NAME="$JOB_PREFIX$NOW"
export JOB_DIR="$GS_BUCKET/$JOB_NAME"

gcloud ml-engine jobs submit training $JOB_NAME \
    --job-dir=$JOB_DIR \
    --module-name=aocr \
    --package-path=aocr \
    --region=$REGION \
    --scale-tier=BASIC_GPU \
    --runtime-version=1.2 \
    -- \
    train $GS_BUCKET/$DATASET_UPLOAD_PATH \
    --steps-per-checkpoint=500 \
    --batch-size=512 \
    --num-epoch=20

结语

Attention-OCR为图像文本识别提供了一个强大而灵活的解决方案。通过结合CNN、LSTM和注意力机制,该模型能够高效准确地从各种复杂图像中提取文本信息。其开源特性和对Google Cloud ML Engine的支持,使其成为研究人员和开发者的理想选择。

尽管Attention-OCR已经展现出优秀的性能,但仍有进一步改进的空间。例如,升级到TensorFlow 2.x、支持更多语言和字符集、优化模型结构等。我们期待看到更多研究者和开发者参与到这个项目中来,共同推动OCR技术的发展。

参考资料

  1. Attention-OCR GitHub仓库
  2. Convert a formula to its LaTex source
  3. What You Get Is What You See: A Visual Markup Decompiler
  4. Torch attention OCR

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多