ZenML: 连接数据科学团队与云基础设施的开源MLOps框架

RayRay
ZenMLMLOps数据科学机器学习云基础设施Github开源项目

ZenML: 连接数据科学和运维的桥梁

在当今的机器学习领域,将数据科学团队的工作成果顺利部署到生产环境中仍然是一个巨大的挑战。ZenML作为一个开源的MLOps框架,正是为了解决这一问题而生。它旨在成为数据科学和运维之间的桥梁,让机器学习项目从实验到生产的过程变得更加顺畅。

🚀 简单易用的MLOps框架

ZenML的核心理念是让MLOps变得简单。它允许数据科学家和ML工程师只需对现有的Python函数进行最小的代码更改,就能创建标准化的机器学习管道。例如:

from zenml import pipeline, step @step def load_data() -> dict: training_data = [[1, 2], [3, 4], [5, 6]] labels = [0, 1, 0] return {'features': training_data, 'labels': labels} @step def train_model(data: dict) -> None: total_features = sum(map(sum, data['features'])) total_labels = sum(data['labels']) print(f"Trained model using {len(data['features'])} data points. " f"Feature sum is {total_features}, label sum is {total_labels}") @pipeline def simple_ml_pipeline(): dataset = load_data() train_model(dataset) if __name__ == "__main__": simple_ml_pipeline()

只需添加@step@pipeline装饰器,就可以将普通的Python函数转换为ZenML管道的组件。这种简单的语法让数据科学家可以专注于算法和模型,而不必过多关注基础设施的复杂性。

🌐 跨云平台和工具的兼容性

ZenML的另一大优势是其强大的兼容性。无论你使用AWS、GCP、Azure,还是Airflow、Kubeflow等工具,ZenML都能无缝适配。这意味着你可以在不同的云平台和MLOps工具之间自由切换,而无需修改代码。

ZenML兼容性

🛠️ 轻松配置MLOps基础设施

ZenML提供了多种方式来帮助团队快速搭建MLOps基础设施:

  1. 一键部署: 通过ZenML的dashboard或CLI命令,可以在选定的云提供商上一键部署完整的MLOps堆栈。

    zenml stack deploy --provider aws
  2. 注册现有基础设施: 如果已经有了必要的基础设施,可以使用ZenML的堆栈向导轻松注册:

    zenml stack register <STACK_NAME> --provider aws
  3. 自定义资源配置: 对于特定的工作负载,ZenML允许精细化控制计算资源:

    from zenml.config import ResourceSettings, DockerSettings @step( settings={ "resources": ResourceSettings(memory="16GB", gpu_count="1", cpu_count="8"), "docker": DockerSettings(parent_image="pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime") } ) def training(...): ...

📊 全面的模型和管道追踪

ZenML提供了强大的模型、管道和工件追踪功能。这使得团队可以清晰地了解每个模型的生产过程:由谁生产、在什么时间、使用什么数据、基于哪个版本的代码等。这不仅保证了完全的可重现性,也满足了审计的需求。

from zenml import Model @step(model=Model(name="classification")) def trainer(training_df: pd.DataFrame) -> Annotated["model", torch.nn.Module]: ...

ZenML模型追踪

🔌 丰富的集成生态系统

ZenML不仅提供了核心的MLOps功能,还集成了许多流行的机器学习工具和服务。例如,你可以轻松地将MLflow用于实验跟踪,使用BentoML进行模型部署,或者通过Slack接收警报:

from bentoml._internal.bento import bento @step(on_failure=alert_slack, experiment_tracker="mlflow") def train_and_deploy(training_df: pd.DataFrame) -> bento.Bento: mlflow.autolog() ... return bento

🎓 学习资源

ZenML提供了丰富的学习资源,帮助用户快速上手:

此外,ZenML还提供了多个实际案例供学习参考,涵盖了从基础的批量推理到复杂的NLP和LLM应用:

  1. 端到端批量推理
  2. 使用BERT的基础NLP
  3. 使用Langchain和OpenAI的LLM RAG管道
  4. 将Huggingface模型部署到Sagemaker端点
  5. LLMops完整指南

🚀 部署ZenML

为了充分发挥ZenML的协作功能,建议将其部署在云端。目前有两种主要的部署方式:

  1. ZenML Pro: 这是一个SaaS版本,提供了一个控制平面来创建和管理多个ZenML服务器。这些服务器由ZenML的专门团队管理和维护,减轻了用户的服务器管理负担。它还提供了额外的功能,如RBAC、模型控制平面等。

  2. 自托管部署: 用户也可以选择在自己的环境中部署ZenML。这可以通过CLI、Docker、Helm或HuggingFace Spaces等多种方式实现。

🖥️ VS Code扩展

ZenML还提供了一个VS Code扩展,让用户可以直接在编辑器中检查堆栈和管道运行情况,无需使用命令行即可切换堆栈。

ZenML VS Code扩展

🗺 路线图与社区

ZenML是一个开放的项目,其路线图定期更新,让社区了解产品的短期、中期和长期发展方向。用户可以通过多种方式影响路线图:

🤝 贡献与社区

ZenML欢迎社区贡献。新手可以从标记为"good first issue"的问题开始。详细的贡献指南可以在CONTRIBUTING.md中找到。

如果你在使用过程中遇到问题,可以在Slack群组中寻求帮助,或者在GitHub仓库中提出issue

📜 许可证

ZenML采用Apache License Version 2.0许可证分发。完整的许可证文本可以在仓库的LICENSE文件中找到。对该项目的任何贡献都将受Apache License Version 2.0的约束。

总的来说,ZenML作为一个开源的MLOps框架,正在努力简化机器学习项目从实验到生产的过程。通过提供简单的API、跨平台兼容性、强大的追踪功能以及丰富的集成生态系统,ZenML正在成为连接数据科学团队和云基础设施的重要桥梁。无论你是刚开始探索MLOps,还是寻求优化现有ML工作流程,ZenML都值得一试。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多