UniLM: 统一的语言模型预训练框架

RayRay
Foundation ModelsTorchScaleMulti-modal预训练Large-scaleGithub开源项目

unilm

UniLM:开创统一语言模型预训练新纪元

在自然语言处理(NLP)领域,预训练语言模型已经成为提升下游任务性能的关键技术。然而,大多数预训练模型要么专注于语言理解,要么专注于语言生成,难以同时应对这两类任务。为了解决这一问题,微软研究院开发了UniLM(Unified Language Model)统一语言模型预训练框架,开创了NLP领域的新纪元。

UniLM的发展历程

UniLM项目始于2019年,经过几年的持续迭代和改进,已发展成为一个强大而灵活的预训练框架。其主要发展历程如下:

  • 2019年9月:UniLM v1发布,首次提出统一的语言模型预训练方法,同时支持自然语言理解(NLU)和生成(NLG)任务。
  • 2020年2月:UniLM v2发布,提出伪掩码语言模型(Pseudo-Masked Language Model, PMLM)训练方法,进一步提升了模型性能。
  • 2021年6月:发布UniLM v3、LayoutLMv2、InfoXLMv2等多个改进版本,扩展了多语言和多模态能力。

随着技术的不断进步,UniLM已经发展成为一个涵盖语言、视觉、语音等多个模态的大规模预训练框架,为通用人工智能的发展奠定了重要基础。

UniLM的核心技术

UniLM的核心创新在于其统一的预训练方法,主要包括以下几个方面:

  1. 多任务预训练目标

UniLM采用多个预训练任务来学习丰富的语言表示,包括:

  • 单向语言模型:学习从左到右或从右到左的上下文表示
  • 双向语言模型:学习双向的上下文依赖关系
  • 序列到序列预测:学习编码器-解码器结构的生成能力

通过组合这些任务,UniLM可以同时获得理解和生成能力。

  1. 伪掩码语言模型(PMLM)

UniLM v2引入了PMLM训练方法,使用常规掩码和伪掩码来学习不同类型的上下文关系:

  • 常规掩码:学习被破坏的标记与上下文之间的关系
  • 伪掩码:学习被掩蔽跨度之间的关系

这种方法可以更有效地利用计算资源,提高训练效率。

  1. 统一的Transformer架构

UniLM使用共享的Transformer网络作为骨干,通过精心设计的位置嵌入和自注意力掩码来控制不同预训练任务的信息流动。这种统一的架构使得模型可以灵活地应用于各种下游任务。

UniLM架构图

UniLM的广泛应用

得益于其强大的通用语言理解和生成能力,UniLM在众多NLP任务中取得了卓越的表现:

  1. 文本摘要

在CNN/DailyMail数据集上,UniLM创造了新的抽象式摘要state-of-the-art结果,ROUGE-L得分达到40.51。

  1. 问答系统

UniLM在SQuAD 2.0和CoQA等问答任务上表现优异,显著缩小了生成式方法与抽取式方法之间的差距。

  1. 问题生成

在SQuAD数据集上,UniLM将问题生成的BLEU-4分数提高到22.12,创造了新的state-of-the-art。

  1. 对话系统

在DSTC7文档对话响应生成任务中,UniLM在所有评估指标上都优于之前的最佳系统。

  1. 文档AI

基于UniLM开发的LayoutLM系列模型在文档理解、信息提取等任务上取得了突破性进展。

除了这些典型应用外,UniLM还被广泛应用于机器翻译、文本分类、命名实体识别等多个NLP领域,展现出强大的通用性和扩展性。

UniLM的未来发展

作为一个不断发展的开源项目,UniLM正在向更广阔的领域扩展:

  1. 多模态融合

通过BEiT、LayoutLM等技术,UniLM正在将预训练范式扩展到视觉、布局等多模态数据,朝着通用人工智能迈进。

  1. 大规模模型

UniLM团队正在探索更大规模的预训练模型,如MetaLM、Kosmos等,以获得更强大的few-shot学习和zero-shot迁移能力。

  1. 高效训练与部署

为了应对日益增长的计算需求,UniLM也在研究如MiniLM、EdgeLM等轻量级模型,以及Aggressive Decoding等高效推理技术。

  1. 领域适应

AdaLM等技术的开发,使得UniLM可以更好地适应特定领域和任务的需求。

随着这些技术的不断突破,UniLM有望在未来为NLP乃至整个AI领域带来更多革命性的进展。

结语

UniLM作为一个统一的语言模型预训练框架,不仅在技术上实现了自然语言理解和生成任务的统一,更在实践中展现出强大的通用性和卓越的性能。它的成功充分证明了统一预训练方法的优越性,为NLP的发展指明了方向。随着技术的不断演进,我们有理由相信,UniLM将继续引领NLP领域的创新,为人工智能的进步做出更大的贡献。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多